Copied to
clipboard

G = C22⋊C4×C7⋊C3order 336 = 24·3·7

Direct product of C22⋊C4 and C7⋊C3

direct product, metabelian, supersoluble, monomial

Aliases: C22⋊C4×C7⋊C3, (C2×C28)⋊7C6, (C2×C14)⋊5C12, C14.12(C3×D4), C14.11(C2×C12), (C22×C14).5C6, (C7×C22⋊C4)⋊C3, C2.1(D4×C7⋊C3), C73(C3×C22⋊C4), C222(C4×C7⋊C3), (C22×C7⋊C3)⋊3C4, (C2×C7⋊C3).12D4, C23.2(C2×C7⋊C3), (C23×C7⋊C3).3C2, (C2×C14).15(C2×C6), C22.3(C22×C7⋊C3), (C22×C7⋊C3).14C22, (C2×C4×C7⋊C3)⋊7C2, C2.3(C2×C4×C7⋊C3), (C2×C4)⋊1(C2×C7⋊C3), (C2×C7⋊C3).11(C2×C4), SmallGroup(336,49)

Series: Derived Chief Lower central Upper central

C1C14 — C22⋊C4×C7⋊C3
C1C7C14C2×C14C22×C7⋊C3C23×C7⋊C3 — C22⋊C4×C7⋊C3
C7C14 — C22⋊C4×C7⋊C3
C1C22C22⋊C4

Generators and relations for C22⋊C4×C7⋊C3
 G = < a,b,c,d,e | a2=b2=c4=d7=e3=1, cac-1=ab=ba, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d4 >

Subgroups: 230 in 68 conjugacy classes, 33 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C7, C2×C4, C23, C12, C2×C6, C14, C14, C14, C22⋊C4, C7⋊C3, C2×C12, C22×C6, C28, C2×C14, C2×C14, C2×C14, C2×C7⋊C3, C2×C7⋊C3, C2×C7⋊C3, C3×C22⋊C4, C2×C28, C22×C14, C4×C7⋊C3, C22×C7⋊C3, C22×C7⋊C3, C22×C7⋊C3, C7×C22⋊C4, C2×C4×C7⋊C3, C23×C7⋊C3, C22⋊C4×C7⋊C3
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, C7⋊C3, C2×C12, C3×D4, C2×C7⋊C3, C3×C22⋊C4, C4×C7⋊C3, C22×C7⋊C3, C2×C4×C7⋊C3, D4×C7⋊C3, C22⋊C4×C7⋊C3

Smallest permutation representation of C22⋊C4×C7⋊C3
On 56 points
Generators in S56
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 50)(30 51)(31 52)(32 53)(33 54)(34 55)(35 56)(36 43)(37 44)(38 45)(39 46)(40 47)(41 48)(42 49)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 43 15 29)(2 44 16 30)(3 45 17 31)(4 46 18 32)(5 47 19 33)(6 48 20 34)(7 49 21 35)(8 50 22 36)(9 51 23 37)(10 52 24 38)(11 53 25 39)(12 54 26 40)(13 55 27 41)(14 56 28 42)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)(30 31 33)(32 35 34)(37 38 40)(39 42 41)(44 45 47)(46 49 48)(51 52 54)(53 56 55)

G:=sub<Sym(56)| (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)(42,49), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,43,15,29)(2,44,16,30)(3,45,17,31)(4,46,18,32)(5,47,19,33)(6,48,20,34)(7,49,21,35)(8,50,22,36)(9,51,23,37)(10,52,24,38)(11,53,25,39)(12,54,26,40)(13,55,27,41)(14,56,28,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55)>;

G:=Group( (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)(42,49), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,43,15,29)(2,44,16,30)(3,45,17,31)(4,46,18,32)(5,47,19,33)(6,48,20,34)(7,49,21,35)(8,50,22,36)(9,51,23,37)(10,52,24,38)(11,53,25,39)(12,54,26,40)(13,55,27,41)(14,56,28,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55) );

G=PermutationGroup([[(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,50),(30,51),(31,52),(32,53),(33,54),(34,55),(35,56),(36,43),(37,44),(38,45),(39,46),(40,47),(41,48),(42,49)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,43,15,29),(2,44,16,30),(3,45,17,31),(4,46,18,32),(5,47,19,33),(6,48,20,34),(7,49,21,35),(8,50,22,36),(9,51,23,37),(10,52,24,38),(11,53,25,39),(12,54,26,40),(13,55,27,41),(14,56,28,42)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27),(30,31,33),(32,35,34),(37,38,40),(39,42,41),(44,45,47),(46,49,48),(51,52,54),(53,56,55)]])

50 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D6A···6F6G6H6I6J7A7B12A···12H14A···14F14G14H14I14J28A···28H
order1222223344446···666667712···1214···141414141428···28
size1111227722227···7141414143314···143···366666···6

50 irreducible representations

dim111111112233336
type++++
imageC1C2C2C3C4C6C6C12D4C3×D4C7⋊C3C2×C7⋊C3C2×C7⋊C3C4×C7⋊C3D4×C7⋊C3
kernelC22⋊C4×C7⋊C3C2×C4×C7⋊C3C23×C7⋊C3C7×C22⋊C4C22×C7⋊C3C2×C28C22×C14C2×C14C2×C7⋊C3C14C22⋊C4C2×C4C23C22C2
# reps121244282424284

Matrix representation of C22⋊C4×C7⋊C3 in GL7(𝔽337)

1000000
31433600000
003360000
0001000
0000100
0000010
0000001
,
336000000
033600000
003360000
000336000
0000100
0000010
0000001
,
33624900000
0100000
0001000
003360000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
00002122131
0000100
0000010
,
1000000
0100000
0010000
0001000
0000100
0000124336336
0000010

G:=sub<GL(7,GF(337))| [1,314,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[336,0,0,0,0,0,0,249,1,0,0,0,0,0,0,0,0,336,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,212,1,0,0,0,0,0,213,0,1,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,124,0,0,0,0,0,0,336,1,0,0,0,0,0,336,0] >;

C22⋊C4×C7⋊C3 in GAP, Magma, Sage, TeX

C_2^2\rtimes C_4\times C_7\rtimes C_3
% in TeX

G:=Group("C2^2:C4xC7:C3");
// GroupNames label

G:=SmallGroup(336,49);
// by ID

G=gap.SmallGroup(336,49);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,313,79,881]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^7=e^3=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^4>;
// generators/relations

׿
×
𝔽